Chlorella minutissima grown free and in alginate beads and cytotoxicity of algal extracts on L929 cells

G.L. Mariottini, L. Pane
Dipartimento di Biologia, Università di Genova

KEYWORDS: phytoplankton, Chlorella minutissima, cytotoxicity, cell cultures

Abstract
The study of natural substances produced by several marine organisms led to the discovery of biologically active compounds, several of them have been utilized as drugs, pigments, insecticides, etc. or to synthesize biologically active molecules. The growth of the phytoplanktonic alga Chlorella minutissima (Chlorophyceae), free-living and immobilized in alginate beads, and the cytotoxicity of algal crude extracts on fibroblasts of the continuous cell line L929 are here reported. Algae have been cultured in Wolfe medium; L929 cells have been maintained in DMEM medium in standard conditions. Cultures of free-growing Chlorella minutissima showed an exponential phase of 10-12 days and a stationary phase from 12th day onwards, with a maximum cell density of 27 x 10^6 cells/ml. Algae maintained in alginate beads showed maximum growth (46.5 x 10^6 cell/ml) after 20 days. The cytotoxicity of algal crude extracts was evaluated by Trypan blue dye exclusion. On the basis of preliminary data and of the NOEC, the extracts of 10 to 200 x 10^6 algal cells have been tested on fibroblasts. The calculation of IC_{50} showed that 50% mortality of L929 cells can be obtained with extracts from 69.23 x 10^6 algae (lower and upper confidence limits 65.21 and 73.49 x 10^6 cells respectively). Treated cells showed evident morphological changes and approximately 27% of them showed picnotic nucleus; furthermore, in approximately 8% the occurrence of additional nuclei was emphasized.

Introduction
Natural products are active principles of pharmacological interest; in particular, several substances of marine origin have demonstrated significant activity as antiviral, antiinflammatory and antimicrobial agents (Newman et al., 2003) and many of which have found different pharmacological application. Also marine bacteria, fungi and microalgae have been recently indicated to be an important source of bioactive compounds (Fenical and Jensen, 1993) and phytoplanktonic organisms of the genus Chlorella are known to produce active chemicals (Noda et al., 1996). In this study the growth parameters of Chlorella minutissima have been studied and crude extracts of this alga have been tested for cytotoxicity on L929 mouse fibroblasts.

Materials and methods
Chlorella minutissima cells have been maintained in appropriate culture medium according to Pane et al. (1998). The cultures have been maintained at 18±0.5°C with a light-dark cycle (12-12 hours) (Herpeus BK 6160). Algal growth was estimated through counting by haemocytometer Thoma. L929 fibroblasts have been maintained in MEM medium, added with 1% penicillin-streptomycin, 1% glutamine and 5% bovine fetal serum (FBS) (Euroclone), in 5% CO2 at 37°C (Cellstar). Cytotoxicity tests on L929 cells were carried out using aqueous crude extracts of Chlorella minutissima. For the quantification of the extract the density (cells/ml) of Chlorella minutissima was considered. In toxicity tests four doses (A: 25 x 10^6; B: 50 x 10^6; C: 100 x 10^6; D: 200 x 10^6 cells/ml) were tested on 5 x 10^5 L929 cells in medium without FBS. Cell mortality after 24 hour treatment was estimated through Trypan blue dye exclusion test; the IC_{50} value was calculated through the Trimmed Spearman-Karber method. Preliminary observations of nuclear alterations through the DAPI test were estimated.

Results
The cultures of Chlorella minutissima have shown an exponential phase of 10-12 days and a stationary phase
starting from the 12th day, with the maximum cellular density (27 x 10^4 cells/ml). Crude extracts of Chlorella minutissima have had remarkable effects on cultured L929 cells (Fig. 1), which showed a IC50 value of 69.23 x 10^4 algal cells, with confidence limits of 65.21 and 73.49 x 10^4; in particular 100% mortality was observed with the dose D (200 x 10^4 cells/ml). Treated cells showed evident morphological alterations: approximately 27% of them showed picnotic nucleus and in approximately 8% the presence of nuclei in excess (Fig. 2) was evidenced.

Fig. 1 - Percent survival of L929 cells after treatment with the crude extract of Chlorella minutissima.

Fig. 2 - L929 cells treated with the crude extract of Chlorella minutissima and stained with DAPI.

Discussion

In this study, the easy maintaining of Chlorella minutissima cultures in the laboratory with high biomass yield at 18°C has been confirmed; this can support the need of a sufficient cell amount to carry out toxicity tests. It is known that Chlorella spp. is considered also in the human nutrition, thanks to its high protein, lipid, chlorophyll, carotenoid, vitamin, mineral and pigment content. (Kai, 1991). Chlorella can furnish also a valid nutritional supplement in some pathologies (Merchant and Andre, 2001) and, if used as a dietary supplement, it seems to attenuate the oxidative stress increasing the anti-oxidant processes (Miranda et al., 2001). Derivatives of the chlorophyll extracted from Chlorella spp. moreover seem to inhibit dioxin absorption at the gastrointestinal level and to increase dioxin excretion of rats (Morita et al. 2001). Algae of the genus Chlorella are also used in aquaculture to feed fish larvae (Wilfors and Ohno, 2001). However, during this study crude extracts of Chlorella minutissima have shown an evident cytotoxic effect on L929 cells at doses of 50 x 10^4 cells/ml onwards. The occurrence, even though preliminary, of nuclear alterations in treated cells with some evidence of apoptotic phenomena could make to suppose a possible, even if bland, genotoxic activity of the crude extract of Chlorella minutissima.

Such aspect needs however further searches and aimed tests. From other observations still in course (unpublished data), the activity of Chlorella minutissima could be comparable to that demonstrated for some marine unicellular algae that were seen to effect a strong anti-proliferative activity on cultured cells (Carbonnelle et al., 1999) and a strong action on the embryogenesis of marine copepods (Ianora et al., 1999).

References

